
Regression recap II
Revisiting aspects of regression models  

that we will need for CFA and SEM



Regression recap II
Today’s goal: 

Go over regression assumptions, and how they apply to 
CFA and SEM. 

Outline: 

- Positive definiteness 

- Near-perfect correlations 

- Outliers 

- Normality 

- Missing data



Positive definiteness
An important assumption in CFA and SEM



Positive definiteness

CFA and SEM use the covariance matrix as their basis 
In fact, you can run some CFA and SEM analyses without 
using any raw data! 
However, this is not true if variables are ordinal (e.g. 5-
point items) 

The covariance matrix needs to be positive definite 
Technically speaking, it needs to have an inverse and 
positive eigenvalues



Positive definiteness
What can cause nonpositive definiteness? 

- Perfect or near-perfect correlations (multicollinearity; 
between two or more variables) 

- Outliers (or data entry errors) 

- Missing data 

- Non-continuous items (e.g. 5-point items, binary items) 

In these cases, nonpositive definiteness is a possibility (not a 
given) 

Also, problems may occur even with positive definiteness



Multicollinearity
Remember VIFs?



Multicollinearity
Both X1 and X2 are predictors of Y, but highly correlated with 
each other 

Correlation of X1 with Y is .4 but controlling for X2 it is .2 
Correlation of X2 with Y is .4, but controlling for X1 it is .2 

Two possibilities: 
X1 has a high b (e.g. b1 = .6) and X2 has a low b (e.g. b2 = .3) 
X1 has a low b (e.g. b1 = .3) and X2 has a high b (e.g. b2 = .6) 

Which one is correct?



Multicollinearity

In regression: 
Problem: The wizard is having a hard time deciding on b1 
and b2! 
Consequence: b1 and b2 are untrustworthy 

In CFA/SEM:  
Problem: Some of the eigenvalues become very small 
Consequences: analysis may fail to converge, or give 
nonsensical loadings



Multicollinearity

Tests for multicollinearity: 

- High correlation between Xes 

- Variance inflation factor (VIF), should be lower than 10 (or 
5), and lower than 1 on average 

VIF = 1 / (1 – R2) 
Where R2 is the R2 of the regression of this X with all other 
Xes



Multicollinearity

Multicollinearity is more likely to happen for 5-point scales, 
and even worse for binary (0/1) variables 

Fewer values = higher chance of perfect correlation 

Note: We will also get this at the latent level, when two 
measurement scales are too highly correlated to be 
considered separate 

In this case we call the problem a lack of “discriminant 
validity”



Outliers
Remember Cook’s distances etc.?



should be clear from this diagram that it is important to try to detect outliers to see whether the
model is biased in this way.

FIGURE 7.9 Graph demonstrating the effect of an outlier. The dashed line represents the original regression line
for these data (see Figure 7.3), whereas the solid line represents the regression line when an outlier is present

How do you think that you might detect an outlier? Well, we know that an outlier, by its nature,
is very different from all of the other scores. This being true, do you think that the model will
predict that person’s score very accurately? The answer is no: looking at Figure 7.9, it is evident
that even though the outlier has biased the model, the model still predicts that one value very badly
(the regression line is long way from the outlier). Therefore, if we were to work out the
differences between the data values that were collected, and the values predicted by the model, we
could detect an outlier by looking for large differences. This process is the same as looking for
cases that the model predicts inaccurately. The differences between the values of the outcome
predicted by the model and the values of the outcome observed in the sample are known as
residuals. These residuals represent the error present in the model. If a model fits the sample data
well then all residuals will be small (if the model was a perfect fit to the sample data – all data
points fall on the regression line – then all residuals would be zero). If a model is a poor fit to the
sample data then the residuals will be large. Also, if any cases stand out as having a large residual,
then they could be outliers.

The normal or unstandardized residuals described above are measured in the same units as
the outcome variable and so are difficult to interpret across different models. What we can do is to
look for residuals that stand out as being particularly large. However, we cannot define a universal
cut-off point for what constitutes a large residual. To overcome this problem, we use standardized
residuals, which are the residuals divided by an estimate of their standard deviation. We came
across standardization in section 6.3.2 as a means of converting variables into a standard unit of
measurement (the standard deviation); we also came across z-scores (see section 1.7.4) in which
variables are converted into standard deviation units (i.e., they’re converted into scores that are
distributed around a mean of 0 with a standard deviation of 1). By converting residuals into z-
scores (standardized residuals) we can compare residuals from different models and use what we
know about the properties of z-scores to devise universal guidelines for what constitutes an
acceptable (or unacceptable) value. For example, we know from Chapter 1 that in a normally
distributed sample, 95% of z-scores should lie between −1.96 and +1.96, 99% should lie between
−2.58 and +2.58, and 99.9% (i.e., nearly all of them) should lie between –3.29 and +3.29. Some
general rules for standardized residuals are derived from these facts: (1) standardized residuals

Outliers
A data point that differs 
substantially from the model 

They have a very large 
residual (error) 

Outliers can bias your 
regression coefficients 

How can we detect them? 

Outliers rarely happen with 
5- or 7-point items!



Univariate outliers

Standardize the variable 
Divide it by the standard deviation (this creates a z-score) 

Assess the situation: 
z > 3: clear outliers 

May need to use robust methods 
(see book for example)



Multivariate outliers

When the combination of values of a case is unusual 

Can be detected using: 

- Standardized residuals 

- Cook’s distances 

- Hat values 

- DFBeta and covariance ratio 

- Mahalanobis distances (see book)



Solutions

What to do with outliers? 
Remove the score (only if you have good reasons to) 
Transform the data (see later) 
Replace the score (with the next highest score + 1, or mean 
+ 3.29*sd) 
Use a robust test



Outliers
Note: In Rasch modeling we will pay special attention to 
outliers at the latent level 

Under-fit:  

- A person has several “easy" items wrong, but “hard” items 
correct 

- An item is answered correctly by several “weak” persons, 
but incorrectly by several “strong” persons 

Overfit: 

- Answers of a person / to an item are too deterministic



Outliers

Scale mismatch: 

- Some items are answered correctly by everyone or by 
nobody (hard to determine its difficulty!) 

- Some persons have all items correct or all items incorrect 
(hard to determine their ability!)



Normality
Skewness, kurtosis, etc.



Normality
The error distribution of a model should be normal 

In most linear models, this means that the sampling 
distribution of our outcome value should be normal 
Why? Because outcome = (model) + error; model is fixed, 
so if the sample is normal, then the error is normal 

We don’t know the sampling distribution, so we look at the 
sample itself 

If a value is normally distributed within the sample, then the 
statistic (e.g. mean) is normal between samples as well



Normality

Typical deviations: 

Skewness: the data is slanted to the left or to the right 
Kline: skewness > 3 is bad 

Kurtosis: the data is “peaked” or “fat-tailed” 
Kline: kurtosis > 10 is bad 

Outliers and limits can also cause non-normality



Detection
Visually inspect 

Use ggplot to create a histogram with normal curve 
Check whether the QQ-plot (qplot) is a straight line 

Numerical check 
Use stat.desc with norm=T (in the pastecs package) to get 
skewness, kurtosis, and the Kolmogorov-Smirnoff test 

If there are multiple conditions, also do this per condition 
See cheat sheets for M&E I



Normality

Consequences: When your test assumes normality, 
deviations can result in biased test statistics  

Overestimated or underestimated SEs and p-values 

Solution: transform the data 
This also helps with outliers, non-linear relationships, and 
heteroscedasticity 
However, transformed results are harder to interpret!



Transformations
log transform: 

transformed <- log(original + 1) 
(we use +1, because log(0) does not exist!) 

square root transform: 
transformed <- sqrt(original) 

reciprocal transform: 
transformed <-1/(original + 1) 

How can we interpret these?



Other solutions
Most modern CFA/SEM packages use robust estimation 
methods by default! 

But note that the complexity of these methods sometimes 
causes them to not converge 

When data is binary, ordered, or count, we can use logistic, 
ordered logistic, and poisson models 

MPlus and lavaan have excellent functionality for this 

Note: at the latent level, normality is not a problem, because 
CFA factors are approx. normally distributed by definition



Missing data
How to deal with it



Missing data
Types of missing data: 

Missing Completely at Random (MCAR):  
Missing entries are unrelated to X and Y  
This is usually not a problem (it’s just like having less data) 

Missing at Random (MAR):  
Missing entries are unrelated to Y (not necessarily to X) 
Can result in some biases 
Values can be imputed, if you have auxiliary variables



Missing data

Types of missing data: 

Missing not at Random (MNAR):  
Missing entries may be related to X or Y 
Example: dropout due to discomfort in HCI studies  
You can remove the cases with missing data, but even 
then it can be a problem due to sampling bias



Solutions

Listwise deletion 
Just delete all cases with missing data  
Okay for everything except MNAR 
Severely reduces power if there is a lot of missing data 

Pairwise deletion 
E.g. if var A is missing, then remove case from A —> B, but 
not from B —> C 
Can result in non-positive definiteness!



Solutions
Substitution 

Replace data by the overall mean, group-mean, or a 
prediction (e.g. based on regression with auxiliary vars) 
This tends to results in underestimated SEs 

Imputation  
Use stochastic regression, pattern matching, or random 
hot-deck imputation to come up with the missing value 
These methods try to get closest to the missing value as 
possible, and keep the SE unbiased



Solutions
FIML 

Split the data by “missingness pattern”, fit a model on each 
subset, then combine the models 

Multiple imputation  
Iteratively impute, fit the model, impute based on the 
model, refit the model, etc. 
Imputations are sampled stochastically 

When available, FIML is the most reliable method



Final note

Scaling relative variances 

CFA and SEM are based on the covariance matrix 

CFA and SEM use iterative methods to create the best-
fitting model 

At each step, it will look at how much improvement has 
been made



Final note
Let’s say one variable ranges from 0 to 1000, and another 
from 0 to 10 

A small improvement on predicting one variable may look 
like a large improvement on predicting another! 

This messes with the iterative improvement method 
This method tries to always get better, but with 
unbalanced variances, it sometimes gets worse instead 

Solution: rescale variables to balance variances 
Manually, or using standardized algorithms (e.g. WLSMV)



“It is the mark of a truly intelligent person  
to be moved by statistics.” 

George Bernard Shaw  
 


